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FOREWORD

This Final Tecbnical Report covers all work performed under
contract AF 33(657)-10252 from 15 January 1963 to 15 January 1967, The ?
manuscript waa released by the author September 1967 for publication as
an RTD Technical F.eport.

This contract with the Space-Ceneral Plant, Aerojet-General Cor-
poration, El Monte, Cclifornia, was initiated under ASD (sutsequently RTD)
Project Number 7-943b, entitled "Semi-Rigid or Non-Rigi * Structures for Re-
entry Applications, ' It was accomplished undier the techr cal direction of
Mr. Thomas Campbell, MATF (now ASKMM), of the Manufacturing Technology

Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base,
Ohio.

Mr. J. F, Keville was the Program Manager for Space-General.
Others who participated in the development, fabrication, and test work in this
project were:

A, F. Baca, Stress and i.oads Analyst

M. K. Barsh, Materials Systems Specialist

C. J. Barton, Vehicle Design Engineer

C. R. Burnett, Materials Engineer

J. E, Crawford, Manager, Expandable Structures Department
G. M. Fredy Jr., Test Engineering Supervisor

W. A, Grant, Welding Engineering

J. G. Guidero, Project Staff Engineer

W. Hatalsky, Aerodynamicist

J. 5. Haynes, Test Engineer

C. 8. Horine, Seinor Engineer

C. Huisking, Manufacturing Engineer

D. McNerney, Aerodynamicist

V. Miller, Design Specialist

E. Misselhorn, Thermodynamicist

A, Morrison, Design Specialist
H.
B.

HEEEs

&

Olsen, Senior Engineer

Robinson, Materials and Processes Engineer
. R, Schrink, Manufacturing Enginecr

8. L. Tomkinson, Project Staff Engineer

F. Warren, Program Management Office

J. A, Wrede, Materials Scientist

PP

Cy

In addition to these Space-General technical personnel, numerous other tech-
nicians and project support personnel, as well as subcontractor technical
-gr jonnel, participated significantly in the completion of this work.
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FOREWORD (Continued)

This project has been accomplished as a part of the Air Force
Manufzcturing Methods Program, the primary objective of which is to develop,
on a timely basis, manufacturing processes, techniques and equipment for use
in economical production of USAF materials and components.

Suggestions concerning additional manufacturing methods develop-
ment required on this or other subjects will be appreciated.

This technical report has been reviewed and is approved.

CEHF 7724

C. H. NELSON, Assistant Chief
Manufactyring Technology Division
Air Force Materials Laboratory
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1.0

APPFWOIX I
TORCH TBET PROCEDURE

PURFOSE
This method is intended for use in determining the ablative char-

acteristics of Silicone rubber specimens.

2.0

2.1

1/4" thick.

2.2

DISCUSSION

TEST SPECIMEN

The specimen shall be cured silicone rubber, measuring 5" dia x

TEST APPARATUS

For heating the specimens, an omen/ace‘aylene torch using a Victor

No. 12 tip shall be used. A holding fixture shall be nused consisting of two
asbestos plates. Tine top piate shall have a 5" dia hole in the center to ac-
commodate the rubber specimen and the bottom plate shall have a 1/2" dia hole
to accommodate a thermocouple wire to record the back side temperature of the
rubber specimen.

A calibrating plate shall be used to determine the flame tempera-

ture. Tuis plate shall consist of a 2" x 2" x 1/8" stainless steel plate, with
a thermocouple embedded in & hole as close to the opposite surface as possible
without rupturing the op.usite surface.
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2.3 TEST PROCEDURE

The oxygen/acetylsne torch shall be placed in & position to im-
pinge the flame on the centex of the steel calibrating plate. The distance the
torch is placed above the calibrating plate will be a functiun of the desired
test temperature.

The specimen to be aged will be placed in the holding fixture
next to the steel calibration plate before calibrating begins.

After the desired temperature iias teen obtained, the torch is
pivoted to impinge the flame on the center of the rubber specimen maintaining
the distance determined during celibration. A contimuovs recording of the back
side temperature of the specimen will be recorded over the duration of the test.

2.4 CALCULATIONS
Test results will be reported as follows:
a. Ablation rate

X = -~ inches per second

original thickness, inches

aged thickness, inches

& ot

time specimen subjected to flame, seconds




Mass weight loss

b.

B Loerd owrrib e vy
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time specimen subjected to flame, seconds
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FABRIC REINFORCEMENT REQUIREMENTS




Requirement Ko. 335-R2
16 May 1963

FABRIC REINFORCEMENT REQUIREMENTS

I. OBJECTIVE

A. High temperature resistant fabric suitable for impregnating and
coating with an elastomeric heat resistant and/or ablation raterial such as
silicone ‘ubber.

B. High strength-to-weight ratio at room temperature and elevated
temperature.

C. High stress-rupt- - and fatigue strengths.
D. Good tear resistance and ductility.
E. High bending flexibility.

F. High crease resistance and bending recovery without significant
loss of strength.

G. Ease of forming to component contour.

H. Ability to make flexible seams or Jjointes such as by brazing or spot
welding.

I. High relisbility.
J. Currently available materials.
K.  Economical cost.

II. AFPLICATION

A. Inflatable paraglider to re-enter earth atmosphere from epace at
hypersonic velocity. Overall tentative dimensions o. the paraglider are
shown in attached sketch no. 335-SK 1. The paraglide: consists of three
tepered inflatable booms approximately 17 feet long x _° inch OD x 16 inch OD.
These three booms are joined to a common vertex by a 56.6 inch outer radius
toroidal section. Fastened betweei: the center keel boom and the outer
leading edge booms is a flexible wing membrane.

B. The purpose of the metal (or glass) fabric is to retain the
geometrical shape of the vehicle in the inflated sections and reinforce the
wing membrane. Two methods of manufacture are contemplated: (a) the fabric
is coated by spreading, dipping, or calendering of the silicone as a flat
meterigl and then applied to the tooling form where the joints >re vulcanized
or similarly fastened, (b) the bare fabric is applied %o the toc:ing form and
brazed, spot-welded, or similarly fastened at the joints after w. ch it is
coated with the silicone material.
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Requirement No. 335-Re

C. The thickness of silicone rubber on the wire or glass clcth may
range from 0.010 inches to 0.15 inchés depending on heat resistant and
ablative properties.

IIT. REQUIREMENTS

A. Vehicle shall be flexible in original condition permitting peckag-
ing like life raft or parachute.

B. Total storage time folded and packaged in space vehicle or capsule
at nominal earth atmosphere (composition and pressure) and room temperatures,
ranges from few days to one year. The silicone matrix is assumed semi-
permeable to the atmosphere (consider oxidation, etc.).

C. Vehicle exposed to outer space enviroument (principal consideration -
high vacuum) after release from space station and deployment to inflated
condition. Time in space vacuum approximately 30 minutes before re-entering
sensible earth atmosphere.

D. Time from re-entering sensible atmosphere at cpproximately
460,000 feet altitude to landing on the ground is approximately 30 minutes
during whish time high re-entry heating occurs for approximately 15 minutes
atove 1000°F. Maximum structural tempesature at any point including certain
Joint areas is assumed to be about 1 F.

E. The inflatable sections are pressurized to approximately 11 psi
above the external ambient pressure prior to entering the atmosphere and
during the remaining flight to landing. N

F. The maximum actual hoop load in a boom is 176 pounds per inch in
tension (constant).

3. Under critical aerodynamic loading, the actual longitudinal load in
a boom varies from & msximum of 159 pounds per inch to a minimum of T pounds
per inch in temnsion.

H. Tension loads in the apex are substantislly higher than above. Final
design will use multiple plies in this area (see item K below).

I. The maximum actual shear load in a bocm is 15.4 pounds per inch
due to beam bending.

J. The maximum actual shear load in the apex is 33 pounds per inch
due to torsion and some beam bending.

K. The above loads may be carried by one or two {or possibly more)
plies of reinforecing cloth depending on the effect on ease of fabrication
or degree of flexibility. Minimum number of plies is desirable. Best design
may be two ply with second ply in blas direction.

IT-2




v {1 i S Ul 0 St i i st s G B A

R

s i et W I

Requirement No. 335-R2
L. Wiug membrane load is a maximum of 2 pounde per inch in tension

due to aerodynamic pressure.

M. The fabric shall not exceed SO$ of its ultimate cor1esgonding o
strength when exposed to the above loads at temperatures from 7O to 10CO'F.

N. Stability and integrity (including strength to withstand maximum
loads) of fsbric must be retained during end sfter re-entry hesting.
(Sufficient retained flexibility is required to withstand dynamic airloads,
meneuver loads, and landing loads.)

0. Quantities required.

1. Experimental: 3 square feet minimum

2. Pilot test: approximately 30 square feet

3. Full scale components construction: 600 to 2000 square feet
IV. TECHNICAL INFORMATION REQUIRED

A. Product or products recommended with full details of materials,
sizes, thickness, weaves, etc.

B. [Fabrication details {method of fabricating each: filaments, strands,
cloth, ete). If another sour~e is to be utilized for materials such as
ftilaments or special ~oatings, stranding, or other; please supply details.

€. 0Cloth physical data: - all properties should be expressed as
function of temperature from -4¢°F to 1200°F (or higher) and after re-cooling
to room temperature. Details of methods of testing are required. Indicate
wihether data are averege values or guaranteed minimums, number of specimens
tested, scatter, and reproducibility of data. Include references if not
tested by firm responding to this inquiry.

1. Tensile strength: ultimate, yield (.f applicable), -stress
rupture, and tensile fatigue.

8. Warp direction
b. Fill direction
¢. 2:1 biaxial loading
d. 1:1 biaxial loeding
2. Deformations for the conditions of item 1.
a. Strain in direction of and transverse to load vs applied load
b. Ductility (% elongation at failure)

c. Creep (short time) at temperature

I1-3




Requirement No. 335-R2

3. In-plane shear strength and shear rigidity.
4, Tear strength.
5. Minimum bend radius
a. For zero permanent set |
b. For no fracture

BenGing flexibility.

Bending fatigue strength (wrinkle and fold endurance).

Loss of strength due to bending and sharp crease folding.

. Weight per unit area.
10. Thickness |

11. Percent cloth volume which is void (to be filled by coating
meterial)

12, Since coated properties may vary from uncoated properties, above
properties of fabriec with silicone (or similar) elastomer coatings -
are also desired wherever available.

D. Oxidation resistance. -
E. Effect of exposure to space environment.

F. Formability to contours (cylinders, cones, toroids, spheres, etc.)

G. Compatibility with silicone elastomers for adhesion. Possible
surface preparation required.

B. Recommended method of making joints (brazing, spot welding, bonding,
sewing, etc.) together with any supporting data on strength of joints or
similar information.

J. Quality sssurance techniques to be employed.

Je Provide additionai information or recommendations based on supplier
research and application experience.

V. ADDITIONAL INFORMATION REQUIRED
A. Capabilities

1. Provide technical discussion or company brochure covering
products, capabilities, related applications, fabricating technigques, etc.

1I-4




Regquirement Ro. 335-R2

including supporting deta. Furnish information on facilities and personnel
for conducting development snd production work.

2. Provide gsimilar information including addresses on subcontractors
and sources of supply to be utilized or recommended. )

B. Prices for recommended xnd alternate fabrics.

1. Standard supplier quantity breskdown.

2. Quantities shown 1in item III-~O.
C. Availability

1. ILead time for currently available recommended products ia
quantities specified.

2. Expected development effort required for improved products
to meet specified requirements.

CJB-JFK II-5
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SCIAKY BROTHERS, INC,

(B. F. Goodrich Co. Report LC-12L49)




LC-1249
Aug. 26, 1964

B.F.GGODRICH COMPANY
. AKRON, CHIO

I. OBJECT:

l. Determine the resistance welding method for the fabrication of
assemblies constructed of ultra-fine nickel-chromium wire mesh.’

2. Make comparable overiapping weld tests using pulsating A.C. current,
pulse (spike) current, and condenser discharge curvent.

3. Prepare tensile test specimens and determine joint efficiency.

4. Determine whether s.‘table series welds can be made without burning
the fabric between the conductors.

5. Determine whether or not aluminum can be used as a back-up current
conductor for series weldin<.

6. Determine joint efficiency obtainable for a double row of over-
lapping spot welds at minimum allowable row spacing.

7. Weld 3, 4 and 5 plies.

Ii. MACHINES USED:

SP0-0-58-2-3-220 #8134
2,300 meivmm short cireuit secondary amps

PMMOC~50~36-440 #6937
8,000 maximum short cirzuit secondary enps

I1I. MATERIAL USED:

! 1.0 mil. ultra~fine nickel-chromium wize mesh tws by two basket weave
i (58 x 58). See Figuvre I,

Fabric Tensile Propertiesg at 70°F
(Informstion supplied by B,F.Goodrich Co.)

Rupture Tensile
Yield Load Yield Load Rupture Modulus
: Test Elongation (1) (lbs/inch) Elongs.ion (%) (1bs "in.)
: No. Warp Fill Warp Fill Wayp Fill Harp Fill Yarp Fill
; 1 340 368 9.2 1.8 375 407 16.0 10.0 7,870 23,720
£ 2 357 362 8.7 1.9 397 405 15.6 2.4 8,980 25,700
; 3 353 367 8.3 1.9 387 413 15.1 7.4 7,810 23,6870
! 4 357 354 8.7 2.2 382 402 15.3 1.7 7,660 22,870
: 5 353 - 9.3 - 387 - 15.9 - 7,950 -
AVE, 352 363 8.8 1.95 388 &7 15.6 .6 8,054 23,990
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LC-1249
Aug. 24, 1964

B.F.GOODRICH COMPANY
AXRON, CHIO

iV. MACHINE SETTIKGS:

See BFG Drawing No. 141660, Skeeta 1 through 6, atteched.
V. PROCEDURE:

z
i
3
H
¢
H
(]
i
3
i
'

M. 1/4" Clezrance
]

| o
1 Hire 3‘!@3; ,‘4' l"’ i
—J. T J /L _,}fL_. -.{ ",{J e ,%
O T -
! J

Aluminiun Back-Up Plate
‘:>'\\ 1/8" Dia.
2 . R ~Corners (Typ) X = Weld

r———i, RWA C1-2 ELECTROLES
D! [ Tap and Botton.
|

SEC, OF WELDING MACHINE
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LC-1249
Aug. 24, 1964

B.F.COODRICH COMPANY
AKRON, OHIO

Material was degreased by the following clesning procedure:

1. Acetcne dip

2. Distilled water

3. 10% Concentrstion of HCl (10-60 seconds)
4, Distilled water

5. Acetone dip

6. Dry (6-360 seconds)

NOTE: Parts were cleaned by B.F.Goodrich Cc. prior to welding.

VI  RESULTS:

Pulsating A.C. curvent, pulse (spike) current, and condenser discharge
current types of resistance welding were attempted. No appreciable
difference was noted. Since the production application called for
overlapping spots or seam welding, the remainder of the work was
asccomplished on our Sciaky PMMOC-50-36-440 seam welder.

Joint efficiency of 80% (weld setting 3-27) on two ply single row and
85% (weld setting 4-35) on two ply double, row welds was achieved.

Double row series w:lds were attempted to determine row spacing and

- type of back-up. Overlap spot welds spaceé a minimum of 1/4" apart
on copper back-ups produced seams with a joint efficiency of 627%
(two ply only).

Joint cfficiency on 3, 4, and 5 ply mesh is shown below:

Specimen # No. ¢f Ply _Row Load Joint Efficiency Remarks
7-43 3 Single 268 67% Clean break at weld
10~60 3 Double 320 80% C}::: break at weld
5-41 4 Single 220 55% Ci::ﬁ break at weld
10-61 4 Double 260 652 Cii:: break at weld
5-42 5 Single 180 45% W;i:: burned ;
5 Double - Not attempted |

VII. CONCLUSION:

Welds with a joint efficiency of 857 on two ply end 80% on 3 and &4 ply wire
mesh were achieved. Four and 5 ply welds are not vrecommended for high-strength
joints. Double row direct welding is preferred sver double row series welding.

Prepared by: &nd
Alex Chiaro Paul Yankala f
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Comparison of Tensile Strengths of 2, 3, 4, and 5 Layer
Welds in Nickel-Chromium Febrics with the Tensile Strength of
the Unwelded Parent Fabric

1.0 GENERAL

Tensile strengths of 2, 3, 4 and 5 layer resistance lap welded
Karma fabrics were compared with the tensile strength of unwelded fabric. The
test coupons were one inch wide with S8 yarns and gage length of two inches.
The‘welding machine was tested at its lowest operating speed, 2.0 inches of
weld per minute, and at its highest operating speed, 8.4 inches of weld per
minute.

The variation in welding procedure and the number of test samples
that were tested were as follows:

a. 25 coupons of each of the 2, 3, 4 and 5 layer material using
the lower arm of the welding machiae and set at low speed.

b. 6 coupons of each of the 2, 3, U layer material using the
center arm of the welding mechine and set at low speed.

c. 6 coupons of each of the 2, 3, 4 layer material using the
lower arm of the weldirg machine and set at high speed.

d. 6 coupons of each of the 2, 3, I layer material using the

»n AF tha waldine ma
m 0oL LaC QL

center at high speed.

The average of all coupons (154 total) was 83.3% joint efficiency
at 90% confidence, or 85.0% efficiency by arithmetic mean.

The 2 and 3 layer resistance lap materisl coupons which were
wvelded using the lower arm and low speed of the welding machine, were from
Roll #7 and were compared with 8 coupons of the parent material from Roll #7
material. The remainder of the welded coupons were from Roll #1 and were

comparec. with 12 coupons of the parent material from Roll #1 material.

Sy ————— T
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2.0 ARALYSIS

2.1 By means of the "t" test, as outlined in paragraph 3.0, it was deter-
mined that there is over 99.95% confidence that the average tensile strength of
the welded material exceeds TOp of the average tensile strength of the parent
material.

2.2 As indicated in Tables I, II, III and IV, at 90% confidence, the )
average tensile strength for welded material is 78 t089% of the average tensile
strength of the parent material,

TAELE I

Material Welded Using Lower Arm and Low Speed

Avg. Avg. $ of Avg. Lower 90% Confi-
Parent Welded Welded to dence Limit of % of ‘the Lower
No. of Mat'l, Mat'l, Avg. Paren’ Avg. Welded Limit Avg. to
Layers  (1b/in) (it/in) Mat'l. Strength (1b/in) Parent Mat'l.
2 347.7%  290.0k 83.5 280.73 80.7
3 347,74 291,48 83.6 281.89 81.1
L 334.67 290. 86.7 28k.16 84.8
5 334,67 302.96 2.5 299.52 89.4
TABLE 1I
Material Welded Using Center Arm and Low Speed -
Avg. Avg. % of Avg. Lower 90% Confi-
Parent Welded Welded to dence Limit of ¢ of the Lower
No, of  Mat'l, Msbll, Avg. Parent Avg. Welded Limit Avg. to
Layers (1b/in) (1t/in) Mat'l. Strength (1b/in) Parent Mat'l.
2 33Y 289.33 86.5 283.5 8L.6
3 334 284,17 85.2 276.3 82.5
b 33k 270.67 81.0 264. 7 79.0
TABLE IIl
Material Welded Using Lower Arm and High Speed
Avg. Avg. % of Avg. Lower 90% Confi-
Parent  Welded Welded to dence Limit of % of the Lower
o, of Mat'l., Mat'l.  Avg. Parent Avg. Welded Limit Avg. to
Leyers (1b/in) (1b/in) Mat'l. Strength (1b/in) Parent Mat'l.
2 %34 282.50 84.6 277-9 83.5
3 33l 27Th.5 82.2 272.4 81.5
4 %3k 279.3 83.6 277.G 83.0
V-2




TABLE IV
Material Welded Using Center Arm and High Speed
Avg. Avg. 4 of Avg. Lower 90% Confi-

Parent Welded Welded to dence Linmit of ¢ of the Lower
No., of Mat'l. Mat'l. Avg. Parent Avg. Welded Limit Avg. to

Layers  (1b/in) (1b/in) Mat'l, Strength (1b/in) Parent Mat'l
2 334 279.00 83.5 275.0 82.3
3 334 27h. 67 82.2 271.7 81.2
N 334 26k.16 79.1 261.8 78.0
2.3 To further demonstrate the meager reduction in tensile strength follow-

ing the welding procedure, a comparison was made of the weakest welled coupons in
each of the four categories listed above and the strongest of the corresponding
parent material., This worst observed case is summarized in Table V.

TABLE V
Wirakest Coupon Strongest Parent Percentage of
Welding Welding Tensile Strength Mat'l. Tensile Strength Weakest to
Arm Speed (1b/1in) (1b/in, Strongest (%)
Lower Low 260 361 TL. b
Lower Low 270 34 T0.2
Center Low 259 34 75.9
Lower High 270 34 79.2
Center High 260 34 79.3

*
This parent material is from Roll $#7 material strip (the remainder of the

coupons are taken from Roll #1).

3.0 METHOD OF ANALYSIS FOR "t" TEST

The value of “t" is calculated by the following formula:
1 1
s"‘\/— + =
o Nl Né

is the arithmetic average of one set of dats

<t
1]

where

n;%l F}<i

is the arithmetic average of the other set of data

LB

is the number of samples used to determine il

N. 1is the number of samples used to determine Y;

[V~




and t is tabulated in any statistics texthook for various confidence levels
and degrees of freedom vhere the degrees of freedom s Nl + N2 - 2.

For the present case 22 is considered the unknowa average for which
ve wish to be 90§ confident that exceeds it. So in the tables we find t =
1.31 for My = 25, Nz = 8 (the numbe® of samples in the parent population for the
two and three layer case) or N, + N, - 2 = 31. Similarly, t = 1.30 for ¥, = 25,

= 12 (the number of samples in the parent population for the four and Five
18yer case) or X, + H_ - 2 = 35, In those cases where N, = 6 and K, =12,
t = 1.34. (since™N, + N, -2-= 16).

Prepared by Space-General Corporation Reliability Department.
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STATISTICAL ANALYSIS OF WELD STRENGTH WITH 0.050" UPPER ELECTRODES
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STATISTICAL ANALYSIS OF WELD STRENGTH WITH 0.050" UPPER ELECTRODES

A. CONFIDENCE LEVEL THAT AVERAGE EXCEEDS 854
Parent fabric strength is 316 1b/in.
.85 (316) = 268.6

Average of 29 valid coupon tests is 283.6 1b/in.

rX = 8225
X= 283.6
z(x®) = 2,336,629
2
(ZX" . 332,780
29
A = 5;81"9

2 _ 3849 _
8° = 251 137.5

¢ = BL2 . yq

- 29
X
8 = 2.8
X
et t = 280:6-268.6 _ 15.0 _ 4o

2.18 - 2,18

There is more than 99.95% confidence that the average tensile
strength (warp) of a two layer weld exceeds 854 of the average tensile strength
of parent fabric.

B. DETERMINE TENSILE STRENG&H AT 904, CONFIIENCE LEVEL

1.311 = ?—Bg—ﬁls-gl—x ,

x = 28306 - 2:85 = 28008

g_g%‘e_ = 0.8885

Therefore, there is 90% corfidence that the average tensile gtrength
(warp) of & two layer weld exceeds 88.854 of the average tensile strengtk of

Set ¢

parent fabric.
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TEST MODEL SIMILARITY STUDY
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Appendix VI
EST MODEL SIMILARITY STUDY

STRUCTURAL SIMILARITY LAWS

Structural modeling for static and dynamic loads is a cornmon
practice for evaluating the strength and vibration characteristics of com-
plex structures. The basic parameters scaled for model analysis are
strength (material thickness, buckling coefficients, etc. ), flexibility
(modulus, area moment of inertia, etc.), and dynamic response (mass,
weight distribution, stiffness_ etc.).

An inflatable structure has unique features affecting scaling.
The flexible fabric has non-linear load-defiection characteristics, and
these cnaracteristics usually vary with changes in thickness. Also, the
load-deflection characteristics of the pressurized structure are a function
of the magnitude of the internal pressure, the geometry of the structure
and the cloth orientation.

In scaiing ths thickness of the fabric, the non-homogeneous
orthotropic (or anisotropic) properties of the material must be considered.
Scaling of a single cloth parameter such as strength or thickness will cause
changes in other properties such as stiffness or directional behavior. These
resulting changes may vary from being proportional to the original param-
eter change, to being erratic, or to being inversely proportional. The de-
velopment problems associated with obtaining proportional changes in all
fabric properties may be avoided by maintaining the fabric invariant during
scaling.

Thermodynamic considerations such as heat transfer, thermal
stresses, and changes in material prcperties comprisc another set of condi-
tions which may be scaled for similitude under a varying temperature opera-
tional environment. However, thesc factors are difficult to simulate in a
laboratory and an approximation of worst conditions will usually suffice for
structural evaluation. Peak cperational temperature and distribution along
the vehicie surface is held constant while thermal shock conditions are allowed
to vary somewhat.

The scaling ratios for an inflatable paraglider are basically the
same as for any pressure-stabilized thin shell of revolution. However, in the
following derivations of the similitude relationships, the‘wall thickness (t)
is an equivalent value based on fiber diameter, fiber orientation, and fiber
effectiveness of the cloth. The equivalent thickness and modulus (E) are vari-
able functions dependent on loading conditions (magnitude, direction, and bi-
axial condition). Similarly, the stress (o) and area moment of inertia (I),
which are a function of wall thickness, are also equivalent values.

VI-1
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STRESS SIMIL-ARITY*

The stress state at any point in the actual structure will generalily
consist of a superpcaition of pressure stresses, e.g,, "hoop stress,' and
bending and shear stresses rosulting from applied loads, The maximum
stresses, on which the design is based, wiil then consist of these two sets
of stresses in some proportion which varies from point to point over the
structure. To simulate the true distribution of stresses in a subscale test,
the narameters must be such that all components of stress in the model act
in the same proportions as those in the prototype. The pressurz stress, o,
in a thin-walled infi.... “le structure can be expressed by the praportionali?y

pry
where p is the inflation pressure, r 1 is some radius of curvature and t is the

wall thickness (e. g., for a cylinder the hoop stress is pr/t and the axial s¢ress
is pr/2t; for a sphere hoop stress is pr/2t). S8imilarly, the bending stress,
Ty, can be expressed by the proportionality

Mrz
o T (2)

where M is the bending moment, T, is some distance from the neutral axis and

I is the area moment of inertia of the cross section. The bending moment, in
general, will result from somse distribution of loading and can be expressed in
terms of the force per unit length, f(x), by the integral

X2
M= f s £(x) dx, (3)
*1

which may be written in terms of the nondimensional length coordinate
g = x/4 according to

M = z"'? g £(g) de. (4)
51

By introducing the nondimensional force distribution parameter (&) defined as
the ratio of the force per unit length at £ to the value f, at some value § ,
normalized to have the value of unity at £ = £ o’ the in?egral of Eq. (4) ?nay be
written

*Prepared by Aerospace Research Associates, West Covina, California.
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Eqs. (10) and (1) are thus the similarity conditions for invariance of the
biaxial stress states from pressure and from bending and for cosz‘ancy of
stress, If the same thickness of faoric is used in the subscale tests, then
Eqgs. (10) and (11) reduce to

P F . F
medel _gowﬁwe = p:ototvi?a {12)
Pprototype model model

It can be similarly shown that Eqs. {10) and (11) or £q. (12) will satisfy the
condition of invariance of the ratio of shear stress to pressure stress or
shear stress to bending stress. The shear stress, o o Mmay be expressed
by the proportionality

Q

G" -4 ;‘T- » “3)
where the shear force Q is given by
g
Q=41 [ ol8) ds, (14)
1
analogous to Eq. (5) for the bending moment. The shear stress then becomes
52
£
o, = = fg olg) dg (15)
i

and the ratio of the shear stress to the pressure stress, from geometric sim-
ilarity, with the definition of fo' may be written

52
.;-!- e -!:—z [ w(g) dg (16)
P PL 78,

With the condition that the force distribution remains invariant, the condition
that the stress ratio, Eq. (16), remains invariant gives the similarity law,

Eq. (9), which is precisely the condition arrived at from a consideration of

the invariance of the ratio of bending stress to pressure stress. There is

one final condition which must be satisfied if the subscale tests are to simulate
the true strength characteristics of the prototyres. This condition requires

the invariance of the ratio of the maximum stress to the stress at the point of
incipient t-ckling. The conditior. must be satisfied to insure that the subscale
test component does not buckle before the rupture stress is attained, ifor ex-
ample, if such a condition would exist with the prototype. The state of incipient

VIi-4
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buckling occurs when the bending stress in a particular direction of the
membrane is just equal and opposite the pressure stress. Since this
condition irvolvzs the ratip of the bending stress to the pressure stress,
which was assumed invariant in deriving the similarity laws, the conditicn
is automaticzlly satisfied in the scziing laws derived above,

DEFLECTION SIMILARITY

The differential equation for iransverse deilections of a beam
having an area moment of inertia I(x) znd Young's modulus E is

w"(x) = %"x {17)

By introducing, as befcre, the nondimensional length parameter §, the
deflection eguation may be written

2
d‘(g) = 'ﬁ'r% (18)

which, using Eq. (5) for the moment M(€), becomes

s, °2
L £, [
w:‘(g) = m gl gqp(g) dg {19)

The moment of inertia may be expressed in terms of the rnoment of inertia 1
at some value £ , multiplied by the function ¢ (&), which is the ratio of the
moment of inerfla at £ to the value at § , normalized to have the value of
unity at £ . Introducing a nondimensional deflection parameter, n{g), da-
fined as tRe ratio of the deflection w(€) to some dimension 4, the deflection
equation, Eq. (19), becomes

Sz
2 [ ed9ae
" ‘r 5
n"(€) *ﬁ;—m—fgl Solg)dg = Q) (20)
where ¢ is a nondimensional parameter defined by
I ‘;15' (21)

If the force distribution p(2) remains invariant and geometric similarity is
maintained, then { (g) will be invarant and the similarity law for deflection
becomes

VI-~
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Zr
* (n-) (22)
model ©  Iprototype

Since Io is proportional to z3t, the nimiﬂrity law may be written

F . F (23
st model Lt ototype ’

If the model is constructed of the same material as the prototype with the same
wall thickness, the similarity law reduced to

F L
mode! - model (24)

prototype Lorototype

which states that deflections will vary directly as the size of the model*, pro-
vided the applied loads are scaled accordingly.

VIBRATION SIMILARITY

The equation of motion for transverse vibrations of a beam is

o

[Etxiux, 0] * + mix) @ (x,8) = 0, (25)

where m(x) is the mass per unit length at position x. The prime denotes dif-
ferentiation with respect to x and the dot denotes differentiation with re-
spect to t. For sinusoidal motion,

wix. t) = W(x) sin wt, (26)
which gives, for the equation of motion,

[E10 W x)]" - &% mitx) Wix) = o (27)

The quantities m(x) and I(x) may be expressed in terms of nondimeusional
parameters according to

m(x) = m_ u(x)
W(x) = Wo nix) (28)
Ix) =1, ¢x)

*Similarly, shear Jeflections, if significant, may be shown to vary directly.
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where the nondimensional auantities pu(x), y{x) and ¢ (x) are distributions of
mass, deflection and raoment of inertia normalized to have the value of unity
at x = 0. Ir terms of these parameters Eq. (27) becomes

[Elo 1(x) n"(x)]" - wzmo#(!t) nix) = 0. (29)

By irtroducing, as before, the dimensionless length variable £, Eq. (29) be-
comes

[19) n@)" - o? wig) W) = 0, (30)
where QZ is a nondimensional frequency parameter defined by
2 z4"’2“"':;
0 = —pr— (31)
(]

and the primes now denote differentiation with respect to £. Eq. (30) is the
differential equation for transverse vibrations of a beam expressed entirely

in terrus of nondimensional parameters. Solution of this equation will yield

the mode shapes #(§) in terms of the nondimensional frequency parameter ().
Hence, any model with the correct distributions of mass, u(g) and the moment
of inertia, ¢(g), will yield the same mode shapes as the prototype, but the
natural frequencies will differ, in general, from those of the prototype accord-
ing to the magnitudes of the physical parameters in the nondimensional frequency
parameter (. For example, a guometrically similar model of an inflatable
structure will have natural frequeicies compared with thoss of the protolype

according to
2
“ model - (E%
w m. 4
prototype °" "model prototype
The moment of inertia is proportional to :r3t and the mass per unit length is
proportional to prt, where p is the mass density of the material and r is
some average radius. With the condition of geometric similarity, the fre-
quency ratio becomes

4
J 4
et 2
[}

2 2
© model i (E ) ‘%r ) (33)
s —— = | = )
w prototype PT |model prototype

which, for a model constructed of the same material as the prototype, reduces
to

VI-7
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W r
_.Z_L""!_l_ = prototype (34)
¥ prototype © model
Hence, for the scaling described above, the mode chapes of the model will be

the same 28 those of the prototype, whereas the frequencies will vary in-
versely as the size of the structure.
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3.335.7.5

@ SPACE-GERERAL SORPORATION ——

A SVOSIBIARY OF .Il.‘l'o.l’”...b COANPONLAION ~~‘ 335

0000888
. _

ENGINEERING TEST SUMMARY Neport Fo. 103-A — B Y
w Tomkd NS OF MANMIND SUNY

8. L. Cylinder Test
corts: Pr. R. F. Brodsky

Dr, M. !’-‘r

G. H. Fredy

J. F. Keville (3

C. B. Linnecke

A. Speyar

A. H. Olson

H. Wright

BLD Fle

The object of this test wag t0 determine the characteristics of metal
". cloth ecylinder vhen subjected to internal pressures and externally applied
' loads at room tempersture.

[ ]
1. One (1) 7" dlameter tensil bolting cloth cylirfsr 3358K3-5, S/N 1
2. One (1) latex rudder liner

SnST————————
GIP0ITION OF OPCL. Enms:

Burst and dslivered to Project.

TET SUPutun a0 EuTIFICAT IO
1. Loading fixture No. 335-103 made up for applying loads %o Project
First metal cloth cylinders.
2. One inch displacement .001 dial indicators.
3. Mercury manometer celibrated in 1/10 pai.

vi-1
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TEST SEIUP

Test vas set-up to apply shear, bending. and ‘torsiomsl lceds
with various internal pressure to the 7" &lameter metal cloth cylinder.

TESTING FRRFORMED

1. Prelininary shear, torsion, and bending tests were run according
to thy test requiremsnt for the 7" dlameter cylinder. Rough data of these
tests are presented as sn sppendix of this report.”*

2. Shear, hending, aud torsional loads ware then applied as requested
in Revision A of the 7" dlameter Cylinder Test Requirement. Prior to this
test the seanms of the specimen were re-welded to insure against & weld
failure, and to fix a smll separstion of the weld which occurred during

the preliminary test. Displacement and rotatiomsl curves as shown in Figure 1
through 9 are called out as notsd ia Test Requirement Revision A, Seo Figures
10 anl 11 for instrumentation and load application locations.

3. Pressure vas then increased with no external losds applied uatil
burst occurred. Diameter wversus pressure increase s showm on Tatle 1.

To insure against premature failure of the seam, a strip of fiberylass
tape was wrapved siound the cylinder in an area where the seam had sterted
to tear out at the weld points. No further weld failures occurred.

CONCIUSIONS
1. The cylinder durst at ean intermal pressure of 16.5 psig.

2. Due to leak in the internal rubber bladder, pressures at which
the tests were ~un could have been as much as 5% lower than indicated.

* Available in Space-General project files - not included in this report.
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Appendix VII

STRUCTURAL AMALYSIS AND EVALUATION OF
UNCOATED AND CCGATED 7-INCH DIAMETER CYLINDERS

1 TEST LLOADS ANALYSIS
A, Cylinder Test Loads

Torsion, shear, and bending moment loads were derived for
the static load/deflection test of the uncoated bias-ply, the uncoated cross-ply,
and the coated two-ply cylinders {7 inches in diameter and 15 inches in length).
These loads were calculated as concentrated couples for separate application
through a test fixture attached to the forward face of the cylinder. Maximum
static loads for each mode were determined on the basis that the fabric mem-
brane loads due to internal pressure would just balance the externally applied
compressive membrane loads; in other words, the point of incipient fabric
buckling. Assuming a design pressure of 11 psi for a 32-inch-diameter two-
ply cylinder, the test pressure for the two-ply 7-inch-diameter cylinder was
increased to 50 psi by the ratio of the diameters to simulate the design mem-
brane stress level in these smaller test cylinders. Considering the fabric
strength capability of the individual ply fabric, the two-ply test pressure was
reduced to 36 psi for the cross-ply cylinder and 14. 3 psi for the bias-ply
cylinder. Based on these pressures, the maximum test loads were deter-
mined by the following isotropic membrane formulas for incipient buckling:

3
M = 1%-—2 (moment) (1)
vV = 2%— (ehear) (2)
27 R3
T = &L= 2 (torsion) {(3)
V2
where: R = radius (in.)and p = pressure {psi).

The above formulas apply to the cross-ply and two-ply cylinders only. For
the bias-ply, the following formulas for orthotropic fabrics are applicable:

_ 2 . 2 .
foz = fxcos 6+£y sin 9+2fxy gsin 6 cos § (4)
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where:

L S S S
e

£
Y
fey

e

i

- . ) TT YT F TN

.l

2 2
£xsin 9+fycos 0-21

xy

stress in warp direction
stress in fill direction
meridional stress

hoop stress

applied shear stress

gin @ cos 8

(5)

angle between applied stress and {abric siress.

Using the above formulas and the gwen maximum pressure; the
loads necessary to cause incipient buckling for each type of cylinder were
calculated to'be as follqws.

(1)

(2)

(3)

Bias-ply cylinder (uncoated)

p = 14.3 psi (given)
M = 2892 in. -lb.
V=20MhH

T = 1020 in. -lb.

Cross-ply cylinder (uncoated)

£ = 36 psi (given)
M = 2420 in. -1b.
V=1731

T = 6850 in, -1b.

Two-ply cylinder (coated)

50 psi (given)
2380 in. ~1b,
241 1b

H o< g
L]

9530 in. -1b.
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To account for the difference between membrane theory and ortho-
tropic fabric theory of the bias-p v, ‘the momsat, shear, and torque values for
the two-ply coated cyimde:s we*e ;gea {0 the foilowing:

"B Saafeé Eri.‘stuﬁa. ‘I‘esx: ..;aaés - =

The coated two-ply: frnstm& §1a3-in,h mizximum diameter and
30-inch length) were fabricated with the sama tgper {21:1) as the proposed para-
glider booms. Assuming the frustum tube & sub~scale specimen of the forward
end of the boom, the test loads were determined from the limit loads at the
boom forward section. Since the fabric of the test spemmen and full-scale
boom is vbntlcal. the membrane losds in the tast specimen and boom should

be equal (i.e., specxmen = Q. om)‘ Mewmbrane loade due to bending mo-

ment, body shear, and torsion may be determined from the following formulas:

ay = M/ R? (6)
ay = v:'h;‘e = "‘;‘ {at neutral axis) (7)
ap = T/2n R? (8)

By equatiag the specimen membrane loads to the boom limit membrane loads,
the test loads may be calculated from the following formulas:

v o [Raol (9)
10 32 {R

32

R
alo| (10)
32

<
1

10 = Vi

100 ° Y32 (R (11)
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The limit loads of the boom were derived from the a:erodynamic loads pre-
sented in Section 3.2. The combined limit loads at the boom-to-apex junction
used in these calculations are as follows:

VB = 405 1b (shear)
MB = 48,400 in, -1b. (bending moment)
TB = 3,520 in. =1b. (torsion)

It wili be noted that these loads are greater than those presented in Section
3.2.4. The data in this appendix were generated earlier in the program using
more conservative conditions. Therefore the test limit loads will teand to be
higher than actual flight loads predicted by later, more rigorous calculations.

At a boom station equivalent to the small end of the frustums, the
boom combined limit load were determined to be the following:

V'B = 267 1b
' - .
MB = 17,400 in. -lb.’

Using these limit loads and the above fermulas (9, 10, 11), the following
frustum test loads were obtained:

(1) Atbase of frustum (large end)

Vp = 126.5 1b

My = 4710 in. -lb.

TT = 344 in. -lb.
(2) At small end of frustum

V,‘r = 831

M,'r = 1690 1b

These test loads (100%) were used to determine the concentrated loads applied
to the test jig.
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1. STATIC TEST RESULTS
A, Uncoated Cylinders

The bias~ply and cross-p’y uncoated cylinders were tested
separately using an internal thin rubber bladder (as described in Section
3.11.3.1). The internal pressure was increased in several equal increments
up t. Jesign pressure. At each pressure level, the bending moment was ap-
plied in equal increments of the calculated incipient buckling moment until
actual buckling occurred. The bending moment was then released in the same
ircrements until all of the applied load was released. Lateral displacement,
angle of twist, and the bending slope were recorded after each increment. The
following loads and results were obtained tor the bias-ply cylinder.

Seven-Inch~-Diameter Bias-Ply Cylinder Test Results

Internal | Bending | Buckling | Calculated "
Pres- Moment Bend. Bend. Percent Total Deflection
sure Increment Mom. Mom. of Rotation | Translation
{psi) {in, -1b) (in. -1b) (in. -1b) Calc. (deé) (in. )
5 253 758 1010 75 18.0 2.75
10 505 1515 2020 75 19.8 2.59
4.3 723 2169 2892 75 21.6 2.88

The bias-ply cylinder increased 0.786 inch at the mid-diameter and shortened
0. 45 inch in length during the bending test. As indicated in the table above,
large defiections and rotations occurred. At the recorded buckling moment,
the cylinder actually bulged over the cuff at the lower attachment Marman
strap as shown in Figure 206 of Section 3.11.3. 1.

A review of the changes in geometry of the bias fiber explains the
reasons for the large lateral deflection, bending slope, and the bulging mode
of buckling. Figure A represents the fiber orientation prior to loading.

During pressurization, the hoop membrane load is twice the axial
membrane load; therefore, the 45° bias fibers reorient 2s shown in Figure B.
The magnitude would be as indicated above, except for the resistance offered
by the crimp of the weave which offered significant restraint that reduced
values to those obtained during the actval static tests. The bending moment
adds to the membrane load on the tension side of the cylinder and reduces the
pressure tension load on the compressive side. At the same time, the pres-
sure hoop stress realigns the fibers again. Figures C and D indicate these
changes.
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The phantom lines indicate the presasured condition, and the solid
lines show the new position. It can be seen that the tension side tends to
stiffen (bulge less than during pressurization), and the compression side
tends to bulge more. Figure 205 of Section 3. 11. 3.1 showe the original
bulging during pressurization, and Figures 206 and 207 illustrate the above
effects under bending loads.

Calculations for obtaining the bending moment that would cause
incipient buckling {i.e., bending moment where the bending compressive
load eq._als the axial tension load due to pressurization) did not account for
these changes in fiber orientation or the effect of the crimp. They were in-
tended only as a guide for designing test fixtures and selecting load incre--
ments. By coasistently achieving 75% of the calculated ideal incipient bv k-
ling bending moment, a fair measure of these effects has been determined
for the uncoated bias~ply subjected to bending moments.

After the bending test was completed, the bias-ply cylinder was
subjected to an internal pressure of 14,3 psi. Then, a lateral shear ioad
of 207 pounds (100%) was applied in 51.8-pound increments at thz forward
end of the cylinder, resulting in a 25° slope and a 4. 20-inch deflection at
maximum lond. The cylinder again bulged over the base Marmon strap
cuff (as shown in Figure 207 of Section 3.11.3.1). However, the shear load
that caused initial buckling was not »ecorded. It should be noted that a total
deflection of 2.88 inches was obtained during the bending test and 4. 20 inches
during the shear test of the same cylinder for the same internal pressure and
bending moment. The concentrated lateral lead induces both bending and shear
stresses in the cylinder. A comparison of Figures 206 and 207 shows the simi-
larity in the shape of the cylinder under pure banding moment and lateral shear,
respectively. However, the greater lateral displacement recorded during the
shear test can easily be seen. Figure 206 has the classical'curved cylindrical
shape due to pure bending, whereas Figure 207 has the r ombined curved shape
plus the lateral shear displacement. The shear test clearly illustrates the
effect of combined bending deflection and lateral shear displacement due to
the combined loads.

Upon removal of the load, a torque of 1020 inch-pounds was applied
in 255 inch-pound increments. The resulting angle of twist was 2. 9%, and no
buckles were perceptible in Figure 208, Section 3.11.3.1. The torque was
removed and then increased to 2040 inch-pounds (i.e., twice the calcalated
buckling torque), at which time the cylinder slipped on the mounting jig. The
weave characteristics of the bias-ply prevents the possibility of noticeable
buckling waves to occur even though sorne of the fibers are undoubtedly in
compression. The diagonal fibers in tension will tend to straighten out and
will preload or crimp torsionally unloaded opposite diagonal fibers, thus pre-
venting any noticeable slack.

The uncoated cross-ply cylinder was tested in the same manner.
The following loads and results were ohtained for the cross-ply cylinder.

vIoiI-7
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Seven-Inch-Diameter Cross-Ply Cyiinder Tesc Results

Internal | Bending | Buckling | Calculated .
Pres- | Moment Bend. Bend. Percent Total Deflection
sure Increment Mom. Mom. of Rotation | Translation
(psi) (in. -1b) {in. ~1b) {in. -1b) Calc. (deg) {in.)
12 201 1207 807 150 .28 .35
24 403 2421 1614 150 .56 .53
36 1000 1750 2420 72 - -
(failure)

Premature failure of the cross-ply cylinder prevented the comple-
tion of the lateral shear and torsional tests. The severe clamp loads, required
for attaching and sealing the specimen to the mounting fixture, combined locally
with the applied pressure and bending loads {9 cause failure. Inspection of the
failed specimen indicated that some of the fibers had been deformed under the
clamp. However, results obtained during the bending test were quite significant.

Since the fibers of the cross-ply cylinder are oriented in the direc-
tion of the pressure membrane loads, the cylinder did not bulge during pres-
surization, but remained straight and firm. The longitudinal orientation of
the cross-ply fibers are in the same direction as the bending moment membrane
loads. As indicated in the tables above, the bending rotation and lateral dis- -
placement were extremely low for the cross-ply cylinder when compared to the
bias-ply cylinder. This is attributed to the fact that the cross-ply cylinder dis- _
placements are the results of the strain in the individual fibers and the stretch- -
ing of the crimp, whereas the bias-ply cylinder includes these effects plus the
large displacements resulting from the realignment of the fibers. .

The efficiency of the cross-ply cylinder to carry bending moments
was verified by its consistent ability to withstand 150% of the calculated bend-
ing mpment for incipient buckling when the bending compressive load is just
equal and opposite to the pressure tension load. This additional compressive
load-carrying capability is attributed to the individual compressive and bend-
ing strength of the longitudinal fibers which are supported by the lateral fibers
under hoop stress. Had it been performed, the torsional test of the cross-ply
cylinder, undoubtedly would have demonstrated the inefficiency of the cross-
ply under torsion due to the necessary realignment of the fibers to carry the
torsional shear loads. However, the test of the two-ply coated cylinder (re-
viewed below) demonstrated the excellent rigidity and stru<tural integrity of
cross-ply and bias-ply cylinders bonded together to react all three modes of
loading: bending, lateral shear, and torsion.
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B. Coated Two-Ply Cylinder

The test setup for the coated two-ply cylinder was similar to that
employed in the previous tests of the individual uncoated single-ply cylinders.
Bending, shear, and torsion loads were applied separately in equal increments
up to the calculated incipient buckling loads. When buckling was not cbserved
at these loads, the maximum loads were maintained and the pressure was re-
duced until buckles in the specimen were aoted.

The following loads and results were cobtained for the coated two-
ply cylinder:

Seven-Inch-Diameter, Coated Two-Ply Cylinder Test Results -

Buckling
Internal Applied Total Detlection 1:11:. ?I:;?e Percent
Type of | Pressure | Max. Static | Translation § Rotation | Load of
Load (psig) Load (in. ) (de_gl (psiﬂg) Pressure

Bending | 16.6 1210 in. -1b . 342 2.1 5.5 33
Berding | 33.0 2429 in. -1b . 567 3.8 25.0 75
Bending | 50.0 3630 in. -1b .750 5.4 28.0 56
Shear 50.0 207 b .311 1.1 25.0 50
Toreion { 50.0 1530 in. -1b -- 1.9 --

A« ety e v ey

The rotation obtained during the application of the bending incre-
ments shows an increase over that obteined during the test of the uncvated
cross-ply cylinder and a marked decrease over the rcation obtained during
the test of the uncoated bias-~ply cylinder, This difference in rotation can
be attributed to the manner in which the inner bias-ply and outer cross-ply
cylinders share the applied load. In comparing the results with those ob-
tained using the bias-ply cvlinder, a large improvement in the structural
stiffness of the cylinders in bending is noted. Likewise, in comparing these
same results with those obtained using the cross-ply cylinder, the two-ply
cylinder shows a small loss in bending stiffness. This decrease in stiffness
could result from the two piys not sharing the applied loads in the ratio which
was considered ideal. If, for examnple, the bias-ply reacted a larger per-
centage of the internal pressure load than the assumed amount, this would
result in the cross-ply cylinder being partially underloaded. Since most of
the stiffness of the cylinder in bending is a result of the cross-ply, the re-
duction in cross-ply membrane load would likewise allow an increase in
bending rotation. This -ffect is in part burne-out by the decrease ir tor-
sional rotation of the two-ply cylinder as compared to the bias-ply cylinder.
Any decrease in torsional rotation results from the increased stiffness of the
bias-ply due to an increase in its membzrane ioad.
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Appendix IX
FRUSTUM TEST REQUIREMENT

PROJECT FIRST




1.0 SCOPE

The scope of this requirement is to specify the general test methods
for testing of all multifilament ruetal fabric frustum test specimens (SG 1109454}
in accordance with the contraccual requirements of Project FIRST, Contract
Number AF 33(657)-10252.

2.0 TEST SPECDMENS

The test specimens shall be eleven {11) each 10-inch diameter (taper-
ing to 7-inch diameter) x 30-inch long frusturms per Dwg. No. 1109454. Speci-
mens shall be serially numbered S/N P1 (P = Preliminary), 1, 2., . . 10,
Number Pl shall be fabricated from pilot run fabric, and the remainder from
production run fabric.

3.0 GENERAL TEST PROCEDURES
3.1 TEST FACILITY

The test specimens shall be subjected to the tests shown in Table I,
using test facility number 1110603, as shown in Figure 3 of this Requirement,
utilizing calibrated gauges, indicators, and instruments per Air Force require-
ments along with such pneumatic and hydraulic load actuators and other acces-
sories ae may be required.

3.2 SEQUENCE OF TESTING

The sequence of testing has been chosen in such a way as to maximize
the amount and relative importance of data acquired early in the testing sequence.
Should premature failure or otherwise unsatisfactory test results be obtained, a
decision to retest may be made, using a new specimen. In such a case, the new
specimen rlhall be the next one available but the planned order to test specimens
and test scquence shall not be disturbed so that, no matter how many retests
are performed, the tests shall have been performed in the sequence given in
Table I. The order of test sequence may be changed oaly upon agreement of
the Project Engineer.

3.3 TEST SET-~UP
3.3.1 GENERAL PROVISIONS

The end closures shall be assembled to the specimen making sure
that there are no wrinkles which could cause leaks in the fabric in the clamp-
ing area. The clamps shall be positioned as close as possible to the wire rings
at the ends of the specimen. Closures should be parallel to the ends of the
specimen,

NOTE: The specimen shall not be buckled or creased during assembly.
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During and after mounting the completed specimen and closure assem-
blies to the test fixture, the weight of the upper closure or loading jig shall be
reacted by a counterweight. Before mounting the specimen in the test stand, the
preliminary leak test procedure of paragraph 3. 3. 2 below shall be performed.
Finally, the nitrogen supply line and a separate pressure gage or recorder line
shall be connected to the specimen.

For high temperature test setups, the enclosure designed for this
purpose shall be installed and purged of oxygen using dry nitorgen prior to and
during heating the test specimen. Nitrogen atmosphere shall be maintained at
conclusxon of high temperature testing until test part temperature has dropped
below 250°F. Thermocouples shall be installed as indicated in Figure 1 during
test specimen fabrication.

3.3.2 PRELIMINARY LEAK TESTING

Before the nitrogen supply and pressure gage lines are connected to
the test specimen closure fixture, they shall be connected together and a ieak
check of the pneumatic system shall be made at 50 to 60 spig. When the supply
regulator is valved off, the system pressure drop shall be less than 1 psi in
10 minutes.

After assembly of the specimen and end closures per paragraph 3.3.1,
internal nitrogen pressure, not to exceed 2 psig, shall be applied and leaks in
both the specimen and the connections noted., Leaks that can be heard or located
by running the hand over the perimeters of the end joints and pneumatic connec-
tions shall be rectified if they are not in the specimen proper. If no leaks are

otherwise apparent, a solution of standard leak test fluid shall be applied and a .

further check made. Any leaks or coating blisters in the specimen itself shall
be located by inspection, including use of the soap bubble technique, and re-
corded with the relative sizes and locatio